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« Longitudinal bunch profiles and bunch lengths due to the
lon-clearing gap(s)

* RF-system noise transfer to the machine: response
functions computed by Vlasov simulations
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Machine parameters

Parameter gymbol  wvalue unit

Synchronous energy Eg=3 GeV

Circumference ATy = T80.3 m Commissioning phase baseline | phase-four
Revolution frequency whp/2m = 0.384 MHz Parameter gymboaol unit
Momenturn compaction a = 3.68 x 10~ Tncoherent loss per turm 0.816 216 |MeV
Fractional energy spread ge = 9.8 x 10~ Main-cavity field 3.3 49 MV
Average beam current I = 0.5 A Synchronous phase 75.6° 63.8°

RF acceptance Ap/p=3 % HHCs/cells 1/2 2/4

HHC impedance per cell Rp/Qy = 44 L. Number of main cavities 2 4

HHC quality factor Qe = 5 x 10% (est) RF field per cavity L.65 1.225 [MV
RF frequency for = 4005 MHz  RF power per amplifier 217 280  [kW
Bucket harmomic h = 1300 Reflected power per amplifier 12.9 9.7 kW
Impedance per cavity Rp/(Qp = 45 Q Main-cavity detuning Aw /27 6.6 -8.2 |kH=z
Quality factor Qo = 5x10° (est) k Coupling for match 148 6L7 |k
Coupling Qe = 90 k Short-bunch HHC detuning  Awppe/27 62 90 kHz
RF feedback Qn = 180 k

Loaded Q QL = 60 k
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Longitudinal bunch profiles

« The gap in the fill needed for ion clearing introduces a
‘periodic transient’ in the fields in the rf cavities. This
perturbs the potential wells across the bunch train and
alters the profiles, especially of stretched bunches and
especially at the ends of the train. So there is a need to
determine the intensity of the effect and its impact on
lifetime.

 Profiles and rf fields in the cavities were self-consistently
calculated: profiles in the time domain, and rf fields in the
frequency domain. The code was checked with published
ELETTRA measurements, and against a time-domain
code.
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Bunch lengths and phase offsets along train
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Breaking up the gap lessens the transient due to both
shorter gaps and shorter intervals between gaps, keeping

the fill fraction constant. Both the ions and the cavities
see a smaller ring.
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Bunch lengths in the baseline phase
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Bunch lengths in phase four

Bunch length — HHC field
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Beam phase noise

e RF-system noise Is transferred to the beam through the RF
to the cavity. There is LLRF noise, power-supply ripple,
klystron phase and amplitude modulation, synthesizer, etc.

e Some experiments are sensitive to beam phase noise, e.g.,
timing and FTIR, and a fairly tight tolerance is established
for this noise.

» Response functions specify a couple of things.

— How noise in the waveguide power is transferred to the beam-
cavity system. This constrains the spectral dependence of that
noise.

— Structure in the response functions, i.e., poles and zeros, tell us

how feedback can be applied to suppress noise from various
sources (types of loops, gain, bandwidth, compensation).
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7

Vlasov simulations for response functions

Vlasov simulations model the longitudinal
phase space of a bunch, taking into
account the rf fields from main and
harmonic cavities, cavity higher-order
mode impedances, and short range wakes
and their potential well distortion.

Noise in the rf system perturbs the rf
power going to the cavity, and the coupled
cavity/beam system responds to this noise
In its characteristic way. The rf-to-
cavity/beam response function is a
measure of this response.
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Response function types

e There are amplitude and phase modulation Cavivy anplivade response
of the rf, each can carry noise, and they
can be correlated.

e The cavity/beam system responds with
beam phase modulation, beam energy

modulation, cavity phase modulation, and ;e 1 nr 3 es 3w
cavity amplitude modulation.

» So there are eight response functions

=l0a0a

—z000o0

Response

UCavity anplitude response

- _______—__“H“\ﬂ
relating to the performance of the o ! L/\
T . - 0.1
machine, each has magnitude and phase & "~
components. g 0 ool
* Frequency domain response functions are 00008
calculated from corresponding impulse Frequency (kHz)

response functions.
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Phase-Four beam response functions
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Phase-Four cavity response functions
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Noise calcs and phase information

« The calculation of phase noise in the cavity or beam
requires not only knowledge of the response functions, but
also the rf modulation, both AM and PM, and their
correlations. For practical reasons, phases and correlations
of modulation signals are not normally recorded. But even
without this information, cavity and beam noise may be
bounded given the spectrum of rf noise. For example
cavity-field noise may be bounded:
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Noise summary

« Amplitude modulation has greater transfer to the beam and to
the cavity. Phase modulation transfer is smaller, although it still
constrains system-oscillator phase noise.

e The structure in the response functions make it difficult to
extend feedback loops to very large bandwidth--perhaps less
that a kHz. Cavity loops may have little effect on switching
transients at higher 60-Hz harmonics. Beam feedback still has
the potential to suppress noise [Bosch et al. (2007)].

» Kilystron gain and phase ripple are tightly constrained by the
noise specification. Due to the sensitivity of klystron gain and
phase shift to power supply ripple, gain and phase loops around
the klystron are essential. Klystron group delays seem to be low
enough that lots of bandwidth is available.
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Coupled-bunch modes for stretched bunches

* A simple and accurate formula for stability boundary of coupled-
bunch (CB) multipole modes for gaussian bunches exists. But
for stretched bunches where a non-harmonic potential and
Landau damping are present, no such formula is available.
Alternatives are numerical codes.

* Asameans to calculate CB thresholds for stretched bunches, |
modified my Vlasov integration code to track multiple bunches
and used it to track CB modes under the influence of single
HOMs at several frequencies from 1 to over 6 GHz in a
symmetric fill. Four bunches were simulated.

* The modifications were tested with gaussian bunches, verifying
thresholds and the influence of upper vs lower sidebands.
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Vlasov simulations of CB modes

{growthtime = 0 TE2805, T o 0. 225794}
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« Atagiven HOM frequency and
Impedance, the motion of the bunch
centroid is fit to exponentially growing
oscillation, and growth rate and
frequency are extracted.

» Growth rates extracted from runs at
different impedances but the same
frequency are fit to a line, and the fit
extrapolated to the zero-growth
Impedance.
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CB modes In stretched bunches: results

Frowth rate w= impedance

 Unstable bunch mode ey
switches from a 1.5-kHz . "
mode at lower frequencies, ﬁ - o
to a 2.5-kHz mode at N T, v A S
higher frequencies. The I
two modes compete at 3
GHz, possibly a collision s
nearby. |

» Thresholds increase .
quickly with increasing e s

HOM frequency. S e e © ¢
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CB-modes summary

« Stretched CB modes are not likely to be unstable at high
frequencies.
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